Société du Canal de Provence

et d'aménagement de la région provençale

RENCONTRES RED

Changement climatique :
Quels impacts en zone méditerranéenne?
Quelles adaptations pour l'agriculture régionale?

J. CHEREL
E. COUTAGNE
I. LE GOFF
F. PREVOST

Les effets du changement climatique : une préoccupation de la SCP

Changement climatique

Mieux connaitre le présent...

OBJECTIF DE LA SCP

• Évaluer au mieux les **pratiques d'irrigation réelles des agriculteurs pour anticiper sur les évolutions futures**.

CONTRAINTES

- Les pratiques sont très variables d'une zone à l'autre,
- Evolutives et souvent assez mal connues

EN COURS

- Dans le cadre de son *observatoire de l'agriculture irriguée*, la SCP a lancé des campagnes d'enquêtes pour mieux connaitre :
 - ✓ Les matériels utilisés
 - ✓ Les cultures réellement irriguées
 - ✓ Les doses et pratiques d'irrigation

... pour prévoir le futur.

Partager notre réflexion

AVEC LES PARTENAIRES LOCAUX:

- Chambre régionale
- ARDEPI
- Cirame....

AVEC DES ACTEURS DE LA RECHERCHE ET DU DEVELOPPEMENT:

• Le projet R2D2

Contexte et objectifs

Le projet R2D2

LE PROJET

Risque, Ressource en eau, et gestion Durable de la Durance en 2050 – R2D2 2050

Financement:

- Ministère de l'écologie et du développement durable (programme GICC)
- Agence de l'eau RMC

Sept partenaires

- IRSTEA Antony (coordinateur)
- EDF R&D LNHE chatou
- EDF DTG Grenoble
- Université Pierre et Marie Curie Paris
- LTHE Grenoble
- ACTeon
- SCP

Contexte et objectifs

Le projet R2D2

DURÉE

3 ans : de décembre 2010 à décembre 2013

OBJECTIF GÉNÉRAL

Evaluer l'impact du changement climatique et des évolutions socioéconomiques et démographiques à l'horizon 2050 sur le régime naturel du bassin de la Durance et sur les principaux usages.

→ Construire une représentation fidèle du fonctionnement actuel de l'hydrosystème

→ Elaborer des projections climatiques et des scénarios socio-économiques territoriaux

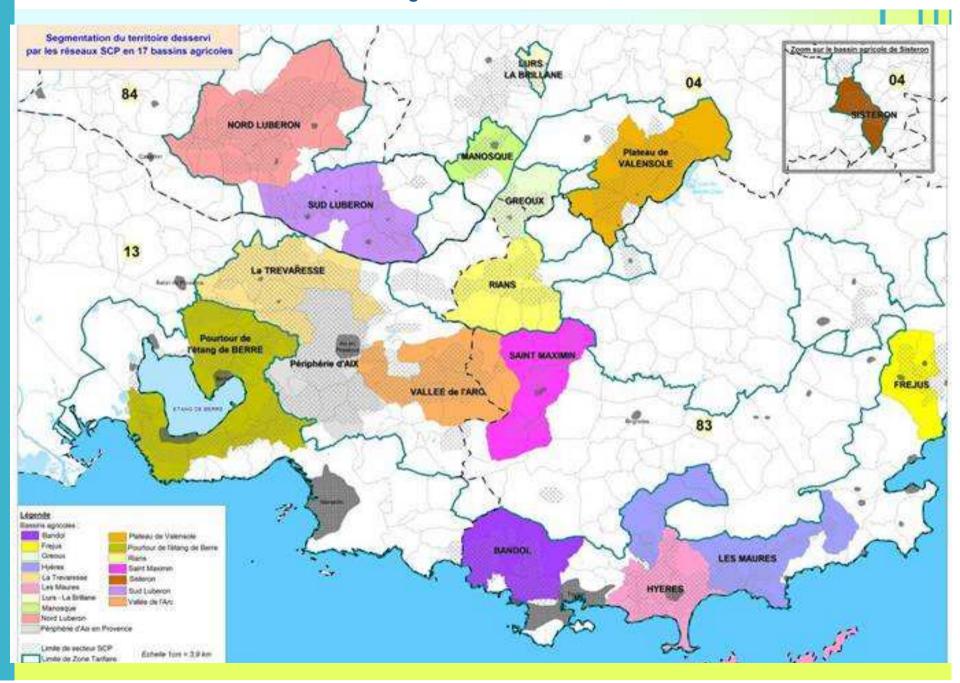
Le rôle de la SCP dans R2D2

OBJECTIF GENERAL

• Fournir un outil permettant de **simuler la demande en eau agricole** à l'horizon 2050

OBJECTIFS SPÉCIFIQUES

- Modéliser les usages agricoles sur les réseaux SCP: mettre au point un modèle de besoins en eau d'irrigation sur la base des chroniques climatiques et consommations passées
- Soumettre le modèle à des **scénarios du futur** (climat, assolement, pratiques...)



Les bassins agricoles sur la concession SCP

Calage du modèle Five CoRe

Utilisation du logiciel et modèle Five CoRe

FIVE CORE: Farm Irrigation Volumes Estimation according to Constraints & Requirements

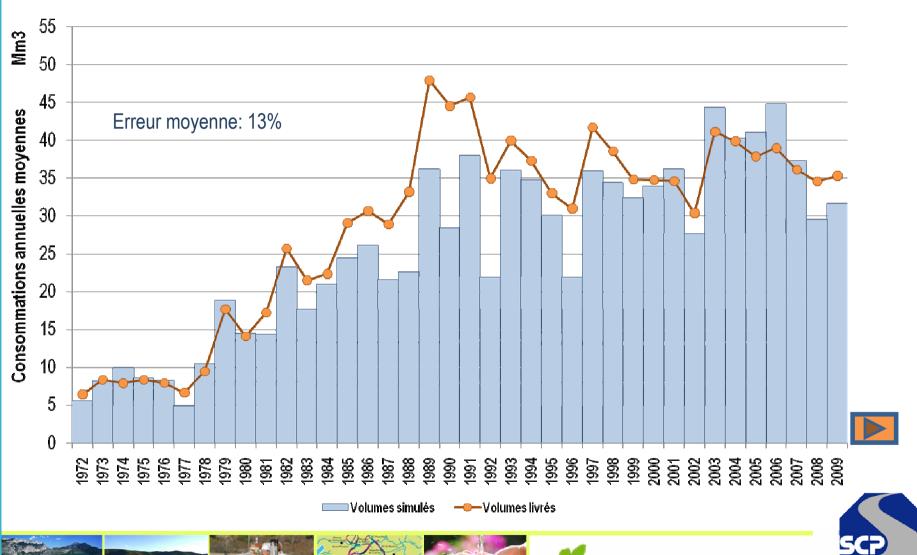
• Logiciel d'estimation des besoins théoriques en eau d'irrigation à l'échelle d'un périmètre (Le Mezo L., Mézimo M., Chopart J.L.)

LES PARAMÈTRES GENERAUX DU MODÈLE:

- Paramètres liés à la parcelle, au cycle cultural et au calendrier de simulation;
- Paramètres liés au **système d'irrigation** et au **pilotage** (système, fréquence et efficience d'irrigation, taux de remplissage de la RU et seuil de déclenchement de l'irrigation);
- Paramètres liés au **bilan hydrique** et à la **réserve utile** du sol (coefficient cultural (Kc), état de la réserve en eau du sol, évolution du front racinaire).

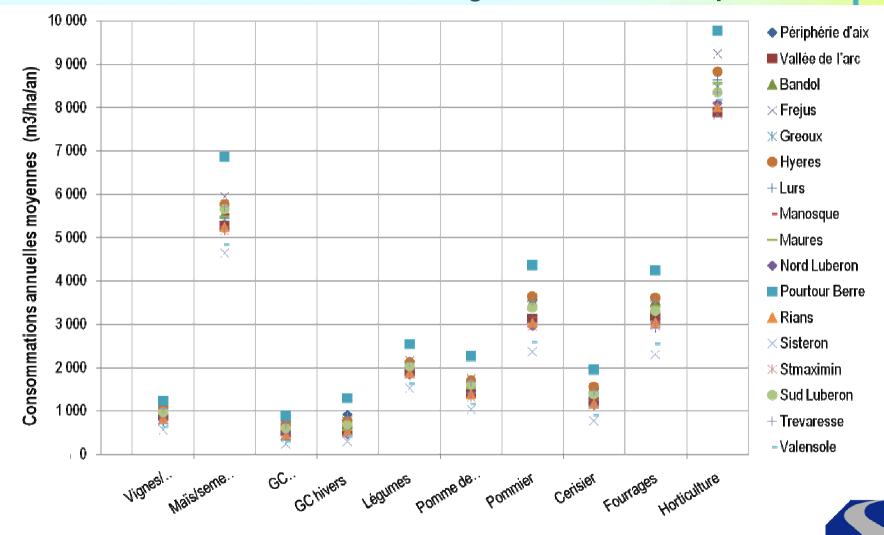
LES VARIABLES D'ENTRÉE DE MODELISATION:

- Les surfaces irriguées par bassin agricole
- Les chroniques météo journalières (Pluie, ETP, Tmoy) par bassin agricole



Calage du modèle Five CoRe

Calage du modèle sur le passé



Calage du modèle Five CoRe

Consommations en eau d'irrigation des cultures par bassin

Les variables de simulation

LE CLIMAT: projections climatiques à l'horizon 2050 (fournies par le projet R2D2)

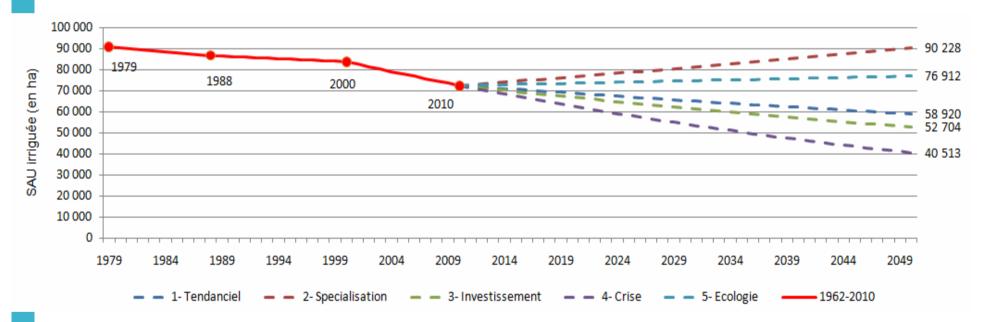
- Un scénario d'évolution du climat : A1B (GIEC, 2007)
 - → 300 projections climatiques (1959 2064)
 - → 10 projections représentatives retenues pour la modélisation des usages agricoles

LE CONTEXTE AGRICOLE (assolement et pratiques d'irrigation): prospective territoriale

- Scénario 1 « Tendanciel »
- Scénario 2 « Economie compétitive mais hétérogène »
- Scénario 3 « Investissement/Divertissement »
- Scénario 4 « Développement réduit au minimum »
- Scénario 5 « Ecologie urbaine et territoriale »
- → Reconstitution de l'assolement irrigué par bassin en 2050 pour chaque scénario...
 - ...à partir des projections d'évolution des surfaces à l'échelle cantonale
- → Simulation de la consommation en eau d'irrigation par bassin à l'horizon 2050 (Five CoRe)

Scénarios « littéraires »

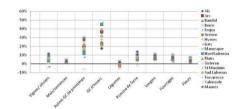
	Tendanciel	« Dérive des continents »	« Investissement & divertissement »	« C'est la crise »	« Ecolo »
Scénarios globaux et territoriaux	Tendances : hélio- tropisme, économie résidentielle, Littoral	Renforcement des hétérogénéités Indépendance régionale	Politique de développement maximal Explosion démographique et périurbaine	Crise économique Diminution de la population	Politique de maîtrise du territoire Densification
Scénarios sectoriels	Évolution tendancielle de chacun des secteurs	Littoral riche, touristique Agriculture spécialisée en Durance	Relance de l'industrie Territoire du divertissement Agriculture en déclin	Diminution du tourisme international et national Agriculture ?	Agriculture durable, efficacité énergétique



Scénarios agricoles

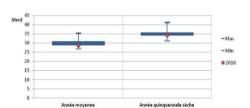
SAU irriguée

- Calcul de la SAU irriguée par scénario
- Répartition de la SAU par type de cultures



Impact du changement climatique sur la consommation en eau

CONSOMMATION DES CULTURES


- → Tendance à la <u>hausse</u> des consommations annuelles moyennes:
 - ≤ 10% sur le territoire toutes cultures confondues
 - Evolution plus contrastée pour les GC de printemps et GC d'hiver

CONSOMMATION SUR LA CONCESSION SCP

- Année normale: 30.9 Mm3 soit +7% par rapport à la période 1980-2009 (28.9 Mm3)
- Année sèche: 35.7 Mm3 soit +4% par rapport à la période 1980-2009 (34.3 Mm3)
- → La consommation à l'horizon 2050 est plus fortement conditionnée par le scénario agricole que par le changement climatique

